کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
754218 | 1462394 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network
ترجمه فارسی عنوان
پیش بینی توانایی شکست لمینیت کامپوزیت شیشه ای / اپوکسی از پارامتر انتشار آکوستیک با استفاده از شبکه عصبی مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
چکیده انگلیسی
The ageing effect of glass/epoxy composite laminates exposed to seawater environment for different periods of time was investigated using acoustic emission (AE) monitoring. The mass gain ratio and flexural strength of glass fiber reinforced plastic (GFRP) composite laminates were examined after the seawater treatment. The flexural strength of the seawater treated GFRP specimens showed a decreasing trend with increasing exposure time. The degradation effects of seawater are studied based on the changes in AE signal parameters for various periods of time. The significant AE parameters like counts, energy, signal strength, absolute energy and hits were considered as training data input. The input data were taken from 40% to 70% of failure loads for developing the radial basis function neural network (RBFNN) and generalised regression neural network (GRNN) models. RBFNN model was able to predict the ultimate failure strength and could be validated with the experimental results with the percentage error well within 0.5-7.2% tolerance, whereas GRNN model was able to predict the ultimate failure strength with the percentage error well within 0.5-4.4% tolerance. The prediction accuracy of GRNN model is found to be better than RBFNN model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Acoustics - Volume 115, 1 January 2017, Pages 32-41
Journal: Applied Acoustics - Volume 115, 1 January 2017, Pages 32-41
نویسندگان
C. Suresh Kumar, V. Arumugam, R. Sengottuvelusamy, S. Srinivasan, H.N. Dhakal,