کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7543243 1489368 2018 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inference in a bimodal Birnbaum-Saunders model
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Inference in a bimodal Birnbaum-Saunders model
چکیده انگلیسی
We address the issue of performing inference on the parameters that index a bimodal extension of the Birnbaum-Saunders distribution (BS). We show that maximum likelihood point estimation can be problematic since the standard nonlinear optimization algorithms may fail to converge. To deal with this problem, we penalize the log-likelihood function. The numerical evidence we present shows that maximum likelihood estimation based on such penalized function is made considerably more reliable. We also consider hypothesis testing inference based on the penalized log-likelihood function. In particular, we consider likelihood ratio, signed likelihood ratio, score and Wald tests. Bootstrap-based testing inference is also considered. We use a nonnested hypothesis test to distinguish between two bimodal BS laws. We derive analytical corrections to some tests. Monte Carlo simulation results and empirical applications are presented and discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mathematics and Computers in Simulation - Volume 146, April 2018, Pages 134-159
نویسندگان
, ,