کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
754630 895874 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximum likelihood subband polynomial regression for robust speech recognition
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Maximum likelihood subband polynomial regression for robust speech recognition
چکیده انگلیسی

In this paper, we propose a model adaptation algorithm based on maximum likelihood subband polynomial regression (MLSPR) for robust speech recognition. In this algorithm, the cepstral mean vectors of prior trained hidden Markov models (HMMs) are converted to the log-spectral domain by the inverse discrete cosine transform (DCT) and each log-spectral mean vector is divided into several subband vectors. The relationship between the training and testing subband vectors is approximated by a polynomial function. The polynomial coefficients are estimated from adaptation data using the expectation–maximization (EM) algorithm under the maximum likelihood (ML) criterion. The experimental results show that the proposed MLSPR algorithm is superior to both the maximum likelihood linear regression (MLLR) adaptation and maximum likelihood subband weighting (MLSW) approach. In the MLSPR adaptation, only a very small amount of adaptation data is required and therefore it is more useful for fast model adaptation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Acoustics - Volume 74, Issue 5, May 2013, Pages 640–646
نویسندگان
, ,