کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7547687 | 1489806 | 2016 | 44 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Non-parametric Bayesian inference for continuous density hidden Markov mixture model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we present a non-parametric continuous density Hidden Markov mixture model (CDHMMix model) with unknown number of mixtures for blind segmentation or clustering of sequences. In our presented model, the emission distributions of HMMs are chosen to be Gaussian with full, diagonal, or tridiagonal covariance matrices. We apply a Bayesian approach to train our presented model and drive the inference of our model using the Monte Carlo Markov Chain (MCMC) method. For the multivariate Gaussian emission a method that maintains the tridiagonal structure of the covariance is introduced. Moreover, we present a new sampling method for hidden state sequences of HMMs based on the Viterbi algorithm that increases the mixing rate.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistical Methodology - Volume 33, December 2016, Pages 256-275
Journal: Statistical Methodology - Volume 33, December 2016, Pages 256-275
نویسندگان
Najmeh Bathaee, Hamid Sheikhzadeh,