کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7556824 | 1491298 | 2018 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Accurate RNA 5-methylcytosine site prediction based on heuristic physical-chemical properties reduction and classifier ensemble
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
RNA 5-methylcytosine (m5C) is an important post-transcriptional modification that plays an indispensable role in biological processes. The accurate identification of m5C sites from primary RNA sequences is especially useful for deeply understanding the mechanisms and functions of m5C. Due to the difficulty and expensive costs of identifying m5C sites with wet-lab techniques, developing fast and accurate machine-learning-based prediction methods is urgently needed. In this study, we proposed a new m5C site predictor, called M5C-HPCR, by introducing a novel heuristic nucleotide physicochemical property reduction (HPCR) algorithm and classifier ensemble. HPCR extracts multiple reducts of physical-chemical properties for encoding discriminative features, while the classifier ensemble is applied to integrate multiple base predictors, each of which is trained based on a separate reduct of the physical-chemical properties obtained from HPCR. Rigorous jackknife tests on two benchmark datasets demonstrate that M5C-HPCR outperforms state-of-the-art m5C site predictors, with the highest values of MCC (0.859) and AUC (0.962). We also implemented the webserver of M5C-HPCR, which is freely available at http://cslab.just.edu.cn:8080/M5C-HPCR/.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Analytical Biochemistry - Volume 550, 1 June 2018, Pages 41-48
Journal: Analytical Biochemistry - Volume 550, 1 June 2018, Pages 41-48
نویسندگان
Ming Zhang, Yan Xu, Lei Li, Zi Liu, Xibei Yang, Dong-Jun Yu,