کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
757167 1462504 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A measurement-driven adaptive probability hypothesis density filter for multitarget tracking
ترجمه فارسی عنوان
یک فرضیه احتمالی تطبیقی ​​محاسبه فیلتر چگالی برای ردیابی چند هدفه
کلمات کلیدی
سازگاری اندازه گیری رانده شده، ردیابی چند هدفه، تراکم فرضیه احتمالی، تصادفی مونت کارلو
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی هوافضا
چکیده انگلیسی

This paper studies the dynamic estimation problem for multitarget tracking. A novel gating strategy that is based on the measurement likelihood of the target state space is proposed to improve the overall effectiveness of the probability hypothesis density (PHD) filter. Firstly, a measurement-driven mechanism based on this gating technique is designed to classify the measurements. In this mechanism, only the measurements for the existing targets are considered in the update step of the existing targets while the measurements of newborn targets are used for exploring newborn targets. Secondly, the gating strategy enables the development of a heuristic state estimation algorithm when sequential Monte Carlo (SMC) implementation of the PHD filter is investigated, where the measurements are used to drive the particle clustering within the space gate. The resulting PHD filter can achieve a more robust and accurate estimation of the existing targets by reducing the interference from clutter. Moreover, the target birth intensity can be adaptive to detect newborn targets, which is in accordance with the birth measurements. Simulation results demonstrate the computational efficiency and tracking performance of the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Aeronautics - Volume 28, Issue 6, December 2015, Pages 1689–1698
نویسندگان
, , ,