کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
757462 1462521 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An improved multiple model GM-PHD filter for maneuvering target tracking
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی هوافضا
پیش نمایش صفحه اول مقاله
An improved multiple model GM-PHD filter for maneuvering target tracking
چکیده انگلیسی

In this paper, an improved implementation of multiple model Gaussian mixture probability hypothesis density (MM-GM-PHD) filter is proposed. For maneuvering target tracking, based on joint distribution, the existing MM-GM-PHD filter is relatively complex. To simplify the filter, model conditioned distribution and model probability are used in the improved MM-GM-PHD filter. In the algorithm, every Gaussian components describing existing, birth and spawned targets are estimated by multiple model method. The final results of the Gaussian components are the fusion of multiple model estimations. The algorithm does not need to compute the joint PHD distribution and has a simpler computation procedure. Compared with single model GM-PHD, the algorithm gives more accurate estimation on the number and state of the targets. Compared with the existing MM-GM-PHD algorithm, it saves computation time by more than 30%. Moreover, it also outperforms the interacting multiple model joint probabilistic data association (IMMJPDA) filter in a relatively dense clutter environment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Aeronautics - Volume 26, Issue 1, February 2013, Pages 179–185
نویسندگان
, ,