کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
760952 1462424 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aircraft take-off noises classification based on human auditory’s matched features extraction
ترجمه فارسی عنوان
طبقه بندی صدای بالابر هواپیما بر اساس ویژگی های شنوایی انسان استخراج شده است
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی

Air transportation is one of the most important services in the world, contributing greatly to the advancement of modern society. However, it has a local and a global impact on the environment making aircraft take-off noise an important environmental public health concern near airports, and this is a significant subject for monitoring and research. In this work an experimentally validated computational model for aircraft classification is presented. In addition, potentially harmful effects to human health and comfort associated with noise exposure are discussed. The feature extraction of aircraft take-off signals is conducted through a 1/24 octave analysis and Mel frequency cepstral coefficients (MFCC). The aircraft classification is made by using two parallel feed forward neural networks. The aircraft are clustered into classes depending on the installed engine type. This model has 13 aircraft classes and a classification level above 83% with measurements in real time environment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Acoustics - Volume 84, October 2014, Pages 83–90
نویسندگان
, , , ,