کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
761395 | 896626 | 2012 | 11 صفحه PDF | دانلود رایگان |

Acoustic wave propagation in a woodpile sonic crystal with a defect is studied theoretically and experimentally. The woodpile sonic crystal is composed of polymethyl methacrylate square rods which orthogonally stacked together, and it is embedded in air background. Defects are created by varying the width and positions of the middle rods in the periodic structure. Defect bands and transmission spectra are calculated by using the finite element method with the periodic boundary condition and the Bloch–Floquet theorem. Frequencies of defect bands are strongly dependent on the width and positions of the middle rods in the periodic structure. The experimental transmission spectra of the woodpile sonic crystals with a defect are also presented and compared with the numerical results. The defect mode properties of the woodpile sonic crystal with a defect can be applied to design novel acoustic devices for filtering sound and trapping sound in defects.
Journal: Applied Acoustics - Volume 73, Issue 4, April 2012, Pages 312–322