کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
761845 1462707 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sloshing impact simulation with material point method and its experimental validations
ترجمه فارسی عنوان
شبیه سازی تاثیر شتاب با روش نقطه ماده و اعتبار سنجی تجربی آن؟
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی


• The MPM is extended to solve the dynamic behavior of sloshing liquids.
• A weakly compressible EOS is incorporated into MPM to compute the pressure field.
• The slosh-induced impact pressure is calculated based on a contact algorithm.
• MPM simulations are validated by experimental results and show good agreements.

Liquid sloshing is usually associated with violent changes and breakups of free surfaces and strong fluid structure interactions. These phenomena present unique challenges for traditional computational fluid dynamics methods. In this paper, the material point method (MPM) is extended to solve the dynamic behavior of sloshing liquids in a moving container and a numerical scheme is developed to calculate impact pressure based on a contact algorithm over background grids. Moreover, a weakly compressible equation of state which employs an artificial sound speed is incorporated into the MPM to compute the pressure field of the liquid phase and a special scheme is employed to apply harmonic excitation to the particle-discretized container. The performance of the improved MPM in prediction of liquid impact pressure is verified by modeling a water block dropping test onto an aluminum plate. To further validate the proposed scheme, liquid sloshing experiments in a partially filled tank are conducted. The slosh-induced impact pressures on the vertical walls of the tank obtained from the MPM simulation are in good agreement with the experimental results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Fluids - Volume 103, 1 November 2014, Pages 86–99
نویسندگان
, , , ,