کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
762773 896711 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regularization techniques for ill-posed inverse problems in data assimilation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Regularization techniques for ill-posed inverse problems in data assimilation
چکیده انگلیسی

Optimal state estimation from given observations of a dynamical system by data assimilation is generally an ill-posed inverse problem. In order to solve the problem, a standard Tikhonov, or L2, regularization is used, based on certain statistical assumptions on the errors in the data. The regularization term constrains the estimate of the state to remain close to a prior estimate. In the presence of model error, this approach does not capture the initial state of the system accurately, as the initial state estimate is derived by minimizing the average error between the model predictions and the observations over a time window. Here we examine an alternative L1 regularization technique that has proved valuable in image processing. We show that for examples of flow with sharp fronts and shocks, the L1 regularization technique performs more accurately than standard L2 regularization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Fluids - Volume 46, Issue 1, July 2011, Pages 168–173
نویسندگان
, , ,