کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
762786 | 896711 | 2011 | 5 صفحه PDF | دانلود رایگان |

Numerical weather prediction (NWP) centres use numerical models of the atmospheric flow to forecast future weather states from an estimate of the current state. Variational data assimilation (VAR) is used commonly to determine an optimal state estimate that miminizes the errors between observations of the dynamical system and model predictions of the flow. The rate of convergence of the VAR scheme and the sensitivity of the solution to errors in the data are dependent on the condition number of the Hessian of the variational least-squares objective function. The traditional formulation of VAR is ill-conditioned and hence leads to slow convergence and an inaccurate solution. In practice, operational NWP centres precondition the system via a control variable transform to reduce the condition number of the Hessian. In this paper we investigate the conditioning of VAR for a single, periodic, spatially-distributed state variable. We present theoretical bounds on the condition number of the original and preconditioned Hessians and hence demonstrate the improvement produced by the preconditioning. We also investigate theoretically the effect of observation position and error variance on the preconditioned system and show that the problem becomes more ill-conditioned with increasingly dense and accurate observations. Finally, we confirm the theoretical results in an operational setting by giving experimental results from the Met Office variational system.
Journal: Computers & Fluids - Volume 46, Issue 1, July 2011, Pages 252–256