کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
769338 897383 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows
چکیده انگلیسی

We develop a new family of well-balanced path-conservative quadrature-free one-step ADER finite volume and discontinuous Galerkin finite element schemes on unstructured meshes for the solution of hyperbolic partial differential equations with non-conservative products and stiff source terms. The fully discrete formulation is derived using the recently developed framework of explicit one-step PNPMPNPM schemes of arbitrary high order of accuracy in space and time for conservative hyperbolic systems [Dumbser M, Balsara D, Toro EF, Munz CD. A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. J Comput Phys 2008;227:8209–53]. The two key ingredients of our high order approach are: first, the high order accurate PNPMPNPM reconstruction operator on unstructured meshes, using the WENO strategy presented in [Dumbser M, Käser M, Titarev VA Toro EF. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J Comput Phys 2007;226:204–43] to ensure monotonicity at discontinuities, and second, a local space–time Galerkin scheme to predict the evolution of the reconstructed polynomial data inside each element during one time step to obtain a high order accurate one-step time discretization. This approach is also able to deal with stiff source terms as shown in [Dumbser M, Enaux C, Toro EF. Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J Comput Phys 2008;227:3971–4001]. These two key ingredients are combined with the recently developed path-conservative methods of Parés [Parés C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J Numer Anal 2006;44:300–21] and Castro et al. [Castro MJ, Gallardo JM, Parés C. High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math Comput 2006;75:1103–34] to treat the non-conservative products properly. We show applications of our method to the two-layer shallow water equations as well as applications to the recently published depth-averaged two-fluid flow model of Pitman and Le [Pitman EB, Le L. A two-fluid model for avalanche and debris flows. Philos Trans Roy Soc A 2005;363:1573–601].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Fluids - Volume 38, Issue 9, October 2009, Pages 1731–1748
نویسندگان
, , , ,