کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
769961 | 897435 | 2006 | 12 صفحه PDF | دانلود رایگان |

A numerical model for the simulation of three-dimensional liquid–gas flows with free surfaces and surface tension is presented. The incompressible Navier–Stokes equations are assumed to hold in the liquid domain, while the gas pressure is assumed to be constant in each connected component of the gas domain and to follow the ideal gas law. The surface tension effects are imposed as a normal force on the interface.An implicit splitting scheme is used to decouple the physical phenomena. Given the curvature of the liquid–gas interface, the method described in [Caboussat A, Picasso M, Rappaz J. Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas. J Comput Phys 2005;203(2):626–49] is used to track the liquid domain and compute the velocity and pressure in the liquid and the pressure in the gas domain. Then the surface tension effects are added. A variational method for the computation of the curvature is presented by smoothing the characteristic function of the liquid domain and using a finite element unstructured mesh.The model is validated and numerical results in two and three space dimensions are presented for bubbles and/or droplets flows.
Journal: Computers & Fluids - Volume 35, Issue 10, December 2006, Pages 1205–1216