کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
773574 1463198 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Phase field simulations of the poling behavior of BaTiO3 nano-scale thin films with SrRuO3 and Au electrodes
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Phase field simulations of the poling behavior of BaTiO3 nano-scale thin films with SrRuO3 and Au electrodes
چکیده انگلیسی


• A phase field model for ferroelectric domain evolution is presented.
• Size effects in the poling behavior of BTO thin films are investigated.
• Different electrode materials have a profound impact on the poling behavior.
• A critical film thickness for ferroelectricity is observed by using a Robin b.c.

A continuum phase field model is used to investigate the poling behavior of BaTiO3 (BTO) thin films with thicknesses ranging from 1 nm–80 nm. The finite element simulations focus on the influence of the electrode material on the electrical hysteresis curves. The 15 nm thick electrodes consist of either SrRuO3 (SRO) or Au and are explicitly included in the simulations. Experimental evidence suggests that there is a depolarization field in SRO-electroded BTO thin films. This depolarization field, which is due to an imperfect charge compensation by the electrodes, causes a suppression of ferroelectricity for film thicknesses of a few unit cells. The depolarization field and its effect on the electrical behavior is captured by a Robin type boundary condition for the order parameter of the phase field model. This boundary condition is applied at the interface between the thin film and the top and bottom electrode.The simulation results show that the overall poling behavior strongly depends on the lattice parameter of the electrode material. Films with SRO electrodes, which have a lattice parameter smaller than the a-parameter of tetragonal BTO, observe a switchable polarization larger than the spontaneous polarization. If Au is used (which has lattice parameter larger than the a-parameter of tetragonal BTO) then switching is inhibited for films which are less than 20 nm thick. It is also shown that the Robin boundary condition induces a depolarization field which has the effect of dramatically reducing the switchable polarization in ultrathin films.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Mechanics - A/Solids - Volume 49, January–February 2015, Pages 455–466
نویسندگان
, , , ,