کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
774459 1463234 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach
چکیده انگلیسی

A fully kinematical, mixed finite element approach based on a recent interior point method for convex optimization is proposed to solve the limit analysis problem involving homogeneous Gurson materials. It uses continuous or discontinuous quadratic velocity fields as virtual variables, with no hypothesis on a stress field. Its modus operandi is deduced from the Karush–Kuhn–Tucker optimality conditions of the mathematical problem, providing an example of cross-fertilization between mechanics and mathematical programming. This method is used to solve two classical problems for the von Mises plasticity criterion as a test case, and for the Gurson criterion for which analytical solutions do not exist. Using only the original plasticity criterion as material data, the method proposed appears robust and efficient, providing very tight bounds on the limit loadings investigated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Mechanics - A/Solids - Volume 28, Issue 1, January–February 2009, Pages 25–35
نویسندگان
, , , ,