کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
774725 1463104 2014 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of fiber orientation on fatigue crack propagation in short-fiber reinforced plastics
ترجمه فارسی عنوان
اثر جهت گیری فیبر در گسترش ترک خستگی در پلاستیک های تقویت شده با فیبر کوتاه
کلمات کلیدی
ترویج ترک خستگی، پلاستیکی تقویت شده با فیبر کم جهت گیری فیبر، مسیر کراک، مکانیک شکستگی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• We examine the effect of fiber orientation on fatigue crack growth in SFRP.
• Increasing fiber orientation angle gives higher growth rate.
• Core layer in injection-molded plate influences crack growth rate and path.
• We propose stress intensity range divided by Young’s modulus as controlling parameter.
• Increasing stress ratio give higher growth rate.

The influence of the fiber orientation on the crack propagation behavior was studied with single edge-notched specimens which were cut from an injection-molded plate of short-fiber reinforced plastics (SFRPs), at five fiber angles relative to the loading axis, i.e. θ = 0° (MD), 22.5°, 45°, 67.5°, 90° (TD). Macroscopic crack propagation path was nearly perpendicular to the loading axis for the cases of MD and TD. For the other fiber angles, the crack path was inclined because the crack tended to propagate along inclined fibers. In the relation between the crack propagation rate and the stress intensity factor range, ΔK, the propagation rate of fatigue cracks was slowest for MD, and increased with increasing fiber angle. When the crack propagation rate was correlated to ΔK/E (E = Young’s modulus), the relations for different orientations merged into a single relation. Based on the results of stress-ratio effect, it was concluded that the crack propagation rate was mainly controlled by ΔK at low rates and by the maximum stress intensity factor Kmax at high rates. For injection molded plates, the existence of the core layer accelerated crack propagation in MD direction, and decelerated in TD direction. Mechanisms of crack propagation were discussed based on microscopic observation of the near crack-tip region and fracture surfaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Fracture Mechanics - Volume 123, June 2014, Pages 44–58
نویسندگان
, , ,