کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
776160 1463509 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nanocomposite adhesives: Mechanical behavior with nanoclay
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Nanocomposite adhesives: Mechanical behavior with nanoclay
چکیده انگلیسی

The major objective for this research was to examine the role of epoxy–clay nanocomposites in the area of epoxy bonding to porous stone (granite) substrates. Two bisphenol A epoxy systems were selected based on the prior work that determined optimal adhesive properties from a larger set of epoxy systems to determine the role of viscosity on the intercalation and exfoliation of the clay tactiods in the epoxy resin. The systems were characterized and mechanically tested at varying levels of intercalated and exfoliated organic clay tactiods. In the first stage of the work, epoxy–clay systems were characterized by wide-angle X-ray diffraction (WAXD) to detect inter-laminar distances of clay layers and to determine if the mixing procedures had indeed dispersed and exfoliated the clay layers sufficiently. The second stage of the work involved examining mechanical properties of the epoxy–nanoclay systems. Fracture behavior was studied using granite stone substrates in notched double lap configuration. Compressing a wedge between the cover plates induced the fracture. Fracture toughness was approximated by the load at fracture. Tensile properties were measured using cast dog bone tensile samples. The better layered silicate nanocomposite performance was seen with the lower viscosity resin. The most noticeable improvements in mechanical properties for the lower viscosity resin system were found to be maximum stress, elastic modulus, and yield stress. Increased toughness and stress whitening at 1% by weight nanoclay loading revealed that the clay can act as a shear-yielding toughening agent in this epoxy system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Adhesion and Adhesives - Volume 31, Issue 5, July 2011, Pages 286–300
نویسندگان
, ,