کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
777501 | 1463536 | 2007 | 7 صفحه PDF | دانلود رایگان |

The elastic finite element analysis (FEA) and the experimental method were used to investigate the effect of the gap, as well as its length, on the stress distribution in both the mid-bondline and the adherend near the interface along the lap zone of adhesively bonded aluminum double-lap joint. The values of the peak stresses distributed in the mid-bondline were increased a little when an 8 mm length gap was arranged symmetrically around the center of the lap zone. Both peak stresses and stress at the point close to the edge of the gap in the mid-bondline were increased when the gap length was increased, but the increment of the peak stresses was small when the lap length was not greater than 16 mm. The results from the FEA simulation showed that the effect of the gap length on the ultimate load of the joint was small as the gap length was increased. It is supported with the results from the experiments that the ultimate load of the aluminum double-lap joint decreased a little when the gap length was less than 12 mm.
Journal: International Journal of Adhesion and Adhesives - Volume 27, Issue 8, December 2007, Pages 696–702