کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
778022 1463210 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed
چکیده انگلیسی

In this paper, stability in parametric resonance of axially moving viscoelastic plates subjected to plane stresses is investigated. The plate material obeys the Kelvin–Voigt model in which the material time derivative is used. The generalized Hamilton principle is employed to obtain the governing equation. The axial speed is characterized as a simple harmonic variation about the constant mean speed. The governing equation can be regarded as a continuous gyroscopic system with small periodically parametric excitations and a damping term. The method of multiple scales is applied to the governing equation to establish the solvability conditions in principal and summation parametric resonances. The natural frequencies and modes of linear generating equation are numerically calculated based on the given boundary conditions. The necessary and sufficient condition of the stability is derived from the Routh–Hurwitz criterion. Some numerical examples are presented to demonstrate the effects of related parameters on the frequencies and the stability boundaries. The differential quadrature scheme is developed to solve numerically the linear generating system and the primitive equation model. The numerical calculations confirm the analytical results.


► Stability of axially accelerating viscoelastic plates is analyzed via the method of multiple scales.
► The governing equation is derived from the generalized Hamilton principle.
► The differential quadrature scheme is used to confirm the analytical results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Mechanics - A/Solids - Volume 37, January–February 2013, Pages 106–121
نویسندگان
, ,