کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
778204 | 1463246 | 2007 | 13 صفحه PDF | دانلود رایگان |

An elastic double-shell model is presented for the buckling and postbuckling of a double-walled carbon nanotube subjected to axial compression. The analysis is based on a continuum mechanics model in which each tube of a double-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible between the inner and outer tubes. The governing equations are based on the Karman–Donnell-type nonlinear differential equations. The van der Waals interaction between the inner and outer nanotubes and the nonlinear prebuckling deformations of the shell are both taken into account. A boundary layer theory of shell buckling is extended to the case of double-walled carbon nanotubes under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. Numerical results reveal that the single-walled carbon nanotube and the double-walled carbon nanotube both have an unstable postbuckling behavior.
Journal: European Journal of Mechanics - A/Solids - Volume 26, Issue 1, January–February 2007, Pages 20-32