کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
778681 1464118 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Response of metallic pyramidal lattice core sandwich panels to high intensity impulsive loading in air
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Response of metallic pyramidal lattice core sandwich panels to high intensity impulsive loading in air
چکیده انگلیسی

Small scale explosive loading of sandwich panels with low relative density pyramidal lattice cores has been used to study the large scale bending and fracture response of a model sandwich panel system in which the core has little stretch resistance. The panels were made from a ductile stainless steel and the practical consequence of reducing the sandwich panel face sheet thickness to induce a recently predicted beneficial fluid–structure interaction (FSI) effect was investigated. The panel responses are compared to those of monolithic solid plates of equivalent areal density. The impulse imparted to the panels was varied from 1.5 to 7.6 kPa s by changing the standoff distance between the center of a spherical explosive charge and the front face of the panels. A decoupled finite element model has been used to computationally investigate the dynamic response of the panels. It predicts panel deformations well and is used to identify the deformation time sequence and the face sheet and core failure mechanisms. The study shows that efforts to use thin face sheets to exploit FSI benefits are constrained by dynamic fracture of the front face and that this failure mode is in part a consequence of the high strength of the inertially stabilized trusses. Even though the pyramidal lattice core offers little in-plane stretch resistance, and the FSI effect is negligible during loading by air, the sandwich panels are found to suffer slightly smaller back face deflections and transmit smaller vertical component forces to the supports compared to equivalent monolithic plates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Impact Engineering - Volume 38, Issue 5, May 2011, Pages 275–289
نویسندگان
, , , , ,