کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
779367 1464128 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of cooling rate on the high strain rate properties of boron steel
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Effect of cooling rate on the high strain rate properties of boron steel
چکیده انگلیسی

In this work, the effect of cooling rate on the high strain rate behavior of hardened boron steel was investigated. A furnace was used to austenize boron sheet metal blanks which were then quenched in various media. The four measured cooling rates during the solid state transformation were: 25 (compressed air quench), 45 (compressed air quench), 250 (oil quench) and 2200 °C/s (water quench). Micro-hardness measurements and optical microscopy verified the expected as-quenched microstructure for the various cooling rates. Miniature dog-bone specimens were machined from the quenched blanks and tested in tension at a quasi-static rate, 0.003 s−1 (Instron) and a high rate, 960 s−1 (split Hopkinson tensile bar). The resulting stress vs. strain curves showed that the UTS increased from 1270 MPa to 1430 MPa as strain rate increased for the specimens cooled at 25 °C/s, while the UTS increased from 1615 MPa to 1635 MPa for the specimens cooled at 2200 °C/s. The high rate tests showed increased ductility for the 25, 45 and 250 °C/s specimens, while the specimens cooled at 2200 °C/s showed a slight decrease. The Hollomon hardening curve was fit to the true stress vs. true strain curves and showed that the mechanical response of the high rate tests exhibited a greater rate of hardening prior to fracture than the quasi-static tests. The hardening rate also increased for the specimens quenched at higher cooling rates. Optical micrographs of the fractured specimens showed that the failure mechanism transformed from a ductile-shear mode at the lower cooling rates to a shear mode at the high cooling rates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Impact Engineering - Volume 37, Issue 6, June 2010, Pages 694–702
نویسندگان
, , , , ,