کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
779639 1464169 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Expanding ring experiments to measure high-temperature adiabatic properties
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Expanding ring experiments to measure high-temperature adiabatic properties
چکیده انگلیسی

High-temperature mechanical properties for metals are usually measured under quasi-isothermal conditions, where thermal equilibrium has been achieved by slowly preheating the samples to a predetermined temperature. However, there are several situations of practical interest where the material is heated rapidly, so thermal diffusion is negligible during the time of heat deposition and mechanical deformation. Hypervelocity impact and penetration, shaped charge jet formation, and pulsed heating in electromagnets are some such situations. Experimental evidence from electron beam heating indicates that high-temperature mechanical properties significantly depend on the rapidity of heat deposition. As the time duration of heating is reduced, the amount of local heat transfer decreases due to limited thermal diffusion. Thus, the thermodynamic process deviates from the isothermal process and approaches the adiabatic process for pulsed heating conditions. Therefore, it is imperative that mechanical properties be measured under appropriate thermodynamic conditions. We propose that the electromagnetically driven expanding ring experiment be used to measure the adiabatic mechanical properties of metals. While earlier expanding ring experiments were conducted primarily to obtain high-strain-rate strength and fragmentation data, our primary goal is to obtain high-temperature data under pulsed heating conditions approaching the adiabatic process. Our preliminary data suggest that the adiabatic mechanical properties are quite different from isothermal properties.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Impact Engineering - Volume 33, Issues 1–12, December 2006, Pages 735–744
نویسندگان
, ,