کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
781166 | 1464582 | 2008 | 8 صفحه PDF | دانلود رایگان |

Spindle and tool vibration measurements are of great importance in both the development and monitoring of high-speed milling. Measurements of cutting forces and vibrations on the stationary spindle head is the most used technique today. But since the milling results depend on the relative movement between the workpiece and the tool, it is desirable to measure on the rotating tool as close to the cutters as possible. In this paper the use of laser vibrometry (LDV) for milling tool vibration measurements during cutting is demonstrated. However, laser vibrometry measurements on rotating surfaces are not in general straight forward. Crosstalk between vibration velocity components and harmonic speckle noise generated from the repeating revolution of the surface topography are problems that must be considered. In order to overcome the mentioned issues, a cylindrical casing with a highly optically smooth surface was manufactured and mounted on the tool to be measured. The spindle vibrations, radial tool misalignment, and out-of-roundness of the measured surface were filtered out from the signal; hence, the vibrations of the cutting tool were resolved. Simultaneous measurements of cutting forces and spindle head vibrations were performed and comparisons between the signals were conducted. The results showed that vibration velocities or displacements of the tool can be obtained with high temporal resolution during cutting load and therefore the approach is proven to be feasible for analysing high-frequency milling tool vibrations.
Journal: International Journal of Machine Tools and Manufacture - Volume 48, Issues 3–4, March 2008, Pages 380–387