کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
783853 1465023 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the bi-planar motion of a Timoshenko beam with shear resistant in-fill
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
On the bi-planar motion of a Timoshenko beam with shear resistant in-fill
چکیده انگلیسی

An exact dynamic stiffness matrix is developed to describe the motion of a uniform beam in which the flexural and torsional motion is coupled in three dimensions by its doubly asymmetric cross-section. The beam comprises a thin walled outer section that encloses, and works compositely with, a core of shear resistant in-fill material. The outer layer can be of open or closed section and flexure is modeled according to Timoshenko theory. In addition, it provides warping, shear and Saint-Venant rigidity, while the core material provides Saint-Venant and shear rigidity. The partial differential equations governing the free vibration of the beam, together with the associated natural boundary conditions, are derived using Hamilton's principle. This gives rise to five coupled equations that are subsequently combined into a single, twelfth order, ordinary differential equation. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick–Williams algorithm, which enables the required natural frequencies to be converged upon to any required accuracy with the certain knowledge that none have been missed. Finally, examples are given to confirm the accuracy of the theory presented.


► An exact dynamic stiffness matrix for a 3-D beam with a shear core is derived.
► The coupled flexural/torsional motion allows for warping and Timoshenko effects.
► The corrections due to shear deformation and rotary inertia are compared.
► The inclusion of a shear core normally reduces the natural frequencies of the beam.
► The Wittrick–Williams algorithm guarantees that no natural frequencies can be missed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Mechanical Sciences - Volume 57, Issue 1, April 2012, Pages 1–8
نویسندگان
, , ,