کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
784383 1465601 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In-situ investigation on the microstructure evolution and plasticity of two magnesium alloys during three-point bending
ترجمه فارسی عنوان
تحقیقات در مورد تکامل میکروارگانیسم و ​​پلاستیک دو آلیاژ منیزیم در خم شدن سه نقطه
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• Strain gradients lead to graded microstructure and texture, affecting plasticity.
• The twin volume fraction is influenced by slip-induced twinning behavior and strain compatibility among surrounding grains.
• Slip-induced twinning behavior and its surrounding effects is much more profound in materials with weak texture.
• The AM30 alloy with weaker texture shows better deformation compatibility than AZ31 alloy.

Three-point bending represents important straining in metal forming, and is an ideal loading condition for in-situ investigation of complex microstructure evolution and plasticity of magnesium alloys. Two extruded alloys with different initial texture, AZ31 (Mg–3%Al–0.5%Zn 1) and AM30 (Mg–3%Al–0.3%Mn), were studied in three-point bending with in-situ electron backscatter diffraction (EBSD) observations, to reveal the role of strain gradient and deformation compatibility in the plasticity of magnesium alloys. The results indicate that strain gradients in macro-scale from tension to compression can lead to a graded microstructure and texture evolution in the samples during bending. At the intergranular and intragranular levels, the volume fraction of twins was influenced by the slip-induced twinning behavior and strain compatibility among the surrounding grains except for Schmid factor relating to grain orientation. Slip-induced twinning behavior and its surrounding effects on the twinning volume fraction is much more profound in materials with weak textures. The AM30 alloy with a weaker texture shows better deformation compatibility (and, thus, formability) during three-point bending compared to AZ31 alloy with a stronger texture in this study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Plasticity - Volume 72, September 2015, Pages 218–232
نویسندگان
, , , ,