کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
784423 1465619 2014 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dislocation slip stress prediction in shape memory alloys
ترجمه فارسی عنوان
پیش بینی استرس لغزش در آلیاژهای حافظه شکل
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• Proposed extended Peierls–Nabarro model for dislocation slip.
• Predicted dislocation slip stress in shape memory alloys.
• Established generalized stacking fault energy (GSFE) curves in martensitic Ni2FeGa.
• Conducted experiments to determine the slip stress in martensitic Ni2FeGa.

We provide an extended Peierls–Nabarro (P–N) formulation with a sinusoidal series representation of generalized stacking fault energy (GSFE) to establish flow stress in a Ni2FeGa shape memory alloy. The resultant martensite structure in Ni2FeGa is L10 tetragonal. The atomistic simulations allowed determination of the GSFE landscapes for the (1 1 1) slip plane and 12[1¯01],12[1¯10],16[2¯11] and 16[112¯] slip vectors. The energy barriers in the (1 1 1) plane were associated with superlattice intrinsic stacking faults, complex stacking faults and anti-phase boundaries. The smallest energy barrier was determined as 168 mJ/m2 corresponding to a Peierls stress of 1.1 GPa for the 16[112¯](111) slip system. Experiments on single crystals of Ni2FeGa were conducted under tension where the specimen underwent austenite to martensite transformation followed by elasto-plastic martensite deformation. The experimentally determined martensite slip stress (0.75 GPa) was much closer to the P–N stress predictions (1.1 GPa) compared to the theoretical slip stress levels (3.65 GPa). The evidence of dislocation slip in Ni2FeGa martensite was also identified with transformation electron microscopy observations. We also investigated dislocation slip in several important shape memory alloys and predicted Peierls stresses in Ni2FeGa, NiTi, Co2NiGa, Co2NiAl, CuZn and Ni2TiHf austenite in excellent agreement with experiments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Plasticity - Volume 54, March 2014, Pages 247–266
نویسندگان
, , ,