کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
785110 1465347 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neimark–Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Neimark–Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system
چکیده انگلیسی

A three-degree-of-freedom vibro-impact system with symmetric two-sided rigid constraints is considered. Since the symmetric period n−2 motion of the vibro-impact system corresponds to the symmetric fixed point of the Poincaré map of the vibro-impact system, we investigate bifurcations of the symmetric period n−2 motion by researching into bifurcations of the associated symmetric fixed point. The Poincaré map of the system has symmetry property, and can be expressed as the second iteration of another unsymmetric implicit map. Based on both the Poincaré map and the unsymmetric implicit map, the center manifold technique and the theory of normal forms are applied to deduce the normal form of the Neimark–Sacker-pitchfork bifurcation of the symmetric fixed point. By numerical analysis, we obtain the Neimark–Sacker-pitchfork bifurcation of the symmetric fixed point of the Poincaré map in the vibro-impact system.


► This paper considers the Neimark–Sacker-pitchfork bifurcation of a vibro-impact system.
► The symmetry property of the Poincaré map is deduced.
► The normal form of the Neimark–Sacker-pitchfork bifurcation is determined.
► The numerical results of the Neimark–Sacker-pitchfork bifurcation are obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 48, January 2013, Pages 51–58
نویسندگان
, ,