کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
785141 1465382 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the general form of the law of dynamics
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
On the general form of the law of dynamics
چکیده انگلیسی

The dynamics of Lagrangian systems is formulated with a differential geometric approach and according to a new paradigm of the calculus of variations. Discontinuities in the trajectory, non-potential force systems and linear constraints are taken into account with a coordinate-free treatment. The law of dynamics, characterizing the trajectory in a general non-linear configuration manifold, is expressed in terms of a variational principle and of differential and jump conditions. By endowing the configuration manifold with a connection, the general law is shown to be tensorial in the velocity of virtual flows and to depend on the torsion of the connection. This result provides a general expression of the EULER–LAGRANGE operator. POINCARÉ and LAGRANGE forms of the law are recovered as special cases corresponding, respectively, to the connection induced by natural and mobile reference frames. For free motions, the geodesic property of the trajectory is directly inferred by adopting the LEVI-CIVITA connection induced by the kinetic energy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 44, Issue 6, July 2009, Pages 689–695
نویسندگان
, , ,