کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
785322 1465402 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A principle of virtual work for combined electrostatic and mechanical loading of materials
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
A principle of virtual work for combined electrostatic and mechanical loading of materials
چکیده انگلیسی

The equations governing mechanics and electrostatics are formulated for a system in which the material deformations and electrostatic polarizations are arbitrary. A mechanical/electrostatic energy balance is formulated for this situation in terms of the electric enthalpy, in which the electric potential and the electric field are the independent variables, and charge and electric displacement, respectively, are the conjugate thermodynamic forces. This energy statement is presented in the form of a principle of virtual work (PVW), in which external virtual work is equated to internal virtual work. The resulting expression involves an internal material virtual work in which (1) material polarization is work-conjugate to increments of electric field, and (2) a combination of Cauchy stress, Maxwell stress and a product of polarization and electric field is work-conjugate to increments of strain. This PVW is valid for all material types, including those that are conservative and those that are dissipative. Such a virtual work expression is the basis for a rigorous formulation of a finite element method for problems involving the deformation and electrostatic charging of materials, including electroactive polymers and switchable ferroelectrics. The internal virtual work expression is used to develop the structure of conservative constitutive laws governing, for example, electroactive elastomers and piezoelectric materials, thereby determining the form of the Maxwell or electrostatic stress. It is shown that the Maxwell or electrostatic stress has a form fully constrained by the constitutive law and cannot be chosen independently of it. The structure of constitutive laws for dissipative materials, such as viscoelastic electroactive polymers and switchable ferroelectrics, is similarly determined, and it is shown that the Maxwell or electrostatic stress for these materials is identical to that for a material having the same conservative response when the dissipative processes in the material are shut off. The form of the internal virtual work is used further to develop the structure of dissipative constitutive laws controlled by rearrangement of material internal variables.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 42, Issue 6, July 2007, Pages 831–838
نویسندگان
, , ,