کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
785429 1466094 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity
چکیده انگلیسی

Time dependent aging and instantaneous threats can cause the initiation of damage in the buried and on-ground pipelines. Damage may propagate all through the structural thickness and cause leaking. The leakage detection in oil, water, gas or steam pipeline networks before it becomes structurally instable is important to prevent any catastrophic failures. The leak in pressurized pipelines causes turbulent flow at its location, which generates solid particles or gas bubbles impacting on the pipeline material. The impact energy causes propagating elastic waves that can be detected by the sensors mounted on the pipeline. The method is called Acoustic Emission, which can be used for real time detection of damage caused by unintentional or intentional sources in the pipeline networks. In this paper, a new leak localization approach is proposed for pipeline networks spread in a two dimensional configuration. The approach is to determine arrival time differences using cross correlation function, and introduce the geometric connectivity in order to identify the path that the leak waves should propagate to reach the AE sensors. The leak location in multi-dimensional space is identified in an effective approach using an array of sensors spread on the pipeline network. The approach is successfully demonstrated on laboratory scale polypropylene pipeline networks.


► Leak is identified in 2D using the 1D algorithm and geometric connectivity.
► The methodology is applicable if the source to sensor path is not straight.
► The hit sequence based on average signal level improves the source location.
► The leak localization in viscoelastic materials is high due to attenuation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Pressure Vessels and Piping - Volume 92, April 2012, Pages 63–69
نویسندگان
, ,