کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
786699 | 1465613 | 2014 | 18 صفحه PDF | دانلود رایگان |
• CP-FEM simulations of Ta oligocrystals were validated with experimental intragranular measurements.
• Model predictions of strain fields showed good agreement with HR-DIC measurements.
• Model predictions of crystal rotations showed good agreement with EBSD measurements.
• Capturing through-thickness variations in deformation is critical to successful validation.
In this work, the grain-scale elastoplastic deformation behavior of coarse-grained body centered cubic (BCC) tantalum was simulated using a crystal plasticity finite element method (CP-FEM) and compared to experimental measurements of intragranular strain and rotation fields. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with millimeter-sized grains provided nearly constant microstructure through the thickness of the tensile bar. Experimental validation was performed in three ways: (1) electron backscatter diffraction (EBSD) to map intragranular rotation, (2) high-resolution digital image correlation (HR-DIC) to map the surface strain field, and (3) surface profilometry to map the out-of-plane topographic distortion. To ensure a direct apples-to-apples comparison to experiments, the details of the initial microstructure and boundary conditions were carefully replicated in the model. The deformation predictions using this novel BCC CP-FEM model for tantalum agree reasonably well with the experimental measurements. In addition, the model successfully predicted the failure location of a specimen subjected to large plastic strains. Several model parameters were explored that influence the BCC CP-FEM predictions such as the mesh dependence, the choice of active slip planes in BCC metals and the assignment of initial crystal orientations.
Journal: International Journal of Plasticity - Volume 60, September 2014, Pages 1–18