کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
791566 | 901970 | 2012 | 9 صفحه PDF | دانلود رایگان |

The solution of the linear steady problem of the flow of an inviscid, incompressible and infinitely deep liquid around a sphere under an ice sheet, which is modelled by a thin elastic stressed plate of constant thickness is constructed. Special cases of this problem are the motion of a submerged sphere under broken ice, a membrane, and also under the free surface both in the presence and absence of capillary effects. The method of multipole expansions is used in the framework of the linear potential wave theory. The hydrodynamic loads (the wave drag and the buoyancy) acting on the body and also the distribution of the deflections of the ice sheet are calculated as a function of the body velocity, the ice thickness and the value of the compressing or stretching forces. It is shown that all the flow characteristics depend considerably on the ratio of the body velocity and the critical velocity of flexural-gravitational waves.
Journal: Journal of Applied Mathematics and Mechanics - Volume 76, Issue 3, 2012, Pages 293–301