کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7917295 | 1511092 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Data-driven short-term forecasting of solar irradiance profile
ترجمه فارسی عنوان
پیش بینی کوتاه مدت از مشخصات تابش خورشیدی، مبتنی بر داده ها
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
پیش بینی کوتاه مدت، تابش خورشید، پیش بینی نوسانات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
This paper presents a short-range forecasting system of 30-min irradiance averages for 0.5 to 6 hours ahead based on per-min data of solar irradiance and ambient temperature. In addition, it explores the possibility of predicting volatility by looking at the distribution of solar irradiance in the next 30-min period with a novel approach that estimates the proportion of points within each of 21 bands defined to cover the range of irradiance. With it, upper and lower bound predictions for the period are obtained to calculate upside and downside risks posed by photovoltaic (PV) generation. Using persistence models for comparison and assessing accuracy across 8 locations, all models showed marked improvement, especially at longer forecast horizons. On average, MAE of point forecast models decreased by 9% (98 to 89 W/m2) and 58% (299 to 125 W/m2) for the 0.5 and 6-hour horizons respectively. For volatility models, MAE decreased from 4.8 to 3.7% in proportion predictions while errors of making upper and lower bound predictions outside the actual range of per-min fluctuations decreased from 43.0 to 10.4% and 30.6 to 3.4% respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Procedia - Volume 143, December 2017, Pages 572-578
Journal: Energy Procedia - Volume 143, December 2017, Pages 572-578
نویسندگان
Poh Soon Loh, Jialing Vivien Chua, Aik Chong Tan, Cheng Im Khaw,