کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
792236 | 1466582 | 2016 | 17 صفحه PDF | دانلود رایگان |
In this wind-tunnel based experimental study, the flow topology of the near wake of a generic anatomically accurate model cyclist is mapped for a range of reduced pedalling frequencies. Wake flow fields for both static leg and pedalling cyclists are compared over the full 360° rotation of the crank using both time- and phase-averaging. The primary wake flow structures and aerodynamic forces are quantified and analysed under dynamic pedalling conditions representative of an elite-level time-trial cyclist. Over the range of reduced pedalling frequencies studied, only minor variation was detected between the instantaneous drag and primary vortical structures of a pedalling cyclist compared to a stationary cyclist with the pedals in the same position. A simplified model of the aerodynamic forces acting on the legs under motion is presented to provide insight into how the motion of the legs influences aerodynamic drag. A comparison of predicted forces from this model with those from experiments provides a new perspective on how the aerodynamics of cyclists may be optimised.
Journal: Journal of Fluids and Structures - Volume 65, August 2016, Pages 121–137