کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
792597 1466590 2015 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical simulation with a TVD–FVM method for circular cylinder wake control by a fairing
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Numerical simulation with a TVD–FVM method for circular cylinder wake control by a fairing
چکیده انگلیسی

A water drop-shaped fairing is applied to control the wake behind a circular cylinder and to suppress the formation of Karman vortex street in this paper. The results are evaluated using high resolution CFD technique. A finite-volume total variation diminishing (TVD) approach based upon the recently proposed elemental velocity vector transformation (EVVT) method, which aims at solving the incompressible turbulent flow for irregular boundary conditions with renormalization group (RNG) turbulence model, is used to simulate the flow field around circular cylinder systems. The calculations are carried out with cylinder systems with and without fairings, while the fairings have different top shape angles within the range of 30°~90°30°~90°. The Reynolds number ranges from 1000 to 50 000. It is shown that the simulation results of present numerical method reaches good agreement with the available experimental and numerical simulation data of typical circular cylinder flow and a fixed fairing cylinder system flow. Compared with bare cylinder, the faired bluff structures can obviously reduce the lift and drag forces and alter the vortex shedding frequency. Overall, the mean drag coefficient can be reduced up to about (10–31)% and the RMS lift coefficient can be reduced up to (30–99)% for all faired systems at given Reynolds numbers. The influence of Reynolds number and attack angles on the flow field characters of bare cylinder and faired cylinders is also discussed. The faired structures with shape angles within 30°~45°30°~45°under zero-attack-angle-inflow case are considered as the optimal structures, with which the mean drag coefficient and the RMS lift coefficient can be reduced up to (26–31)% and (98–99)%, respectively. Considering the influence of attack angles on lift and drag coefficients reduction, 75° shaped faired structure may be taken as a proper option.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Fluids and Structures - Volume 57, August 2015, Pages 15–31
نویسندگان
, , ,