کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
792926 1467057 2016 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-scale defect interactions in high-rate failure of brittle materials, Part II: Application to design of protection materials
ترجمه فارسی عنوان
تعاملات نقص در مقیاس بزرگ در شکست با درجه حرارت شکننده مواد، قسمت دوم: کاربرد در طراحی مواد حفاظتی
کلمات کلیدی
مکانیزم شکستگی، شکستگی دینامیکی، مواد سرامیکی، مواد گرانول تنوع مواد
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی


• We provide further validation of the Tonge–Ramesh model for Boron Carbide.
• We simulate the sphere on cylinder simplified ballistic loading geometry.
• The granular flow of the comminuted material effects the performance of the material.
• The damage model controls the peak strength under uniaxial dynamic compression.

Micromechanics based damage models, such as the model presented in Part I of this 2 part series (Tonge and Ramesh, 2015), have the potential to suggest promising directions for materials design. However, to reach their full potential these models must demonstrate that they capture the relevant physical processes. In this work, we apply the multiscale material model described in Tonge and Ramesh (2015) to ballistic impacts on the advanced ceramic boron carbide and suggest possible directions for improving the performance of boron carbide under impact conditions. We simulate both dynamic uniaxial compression and simplified ballistic loading geometries to demonstrate that the material model captures the relevant physics in these problems and to interrogate the sensitivity of the simulation results to some of the model input parameters. Under dynamic compression, we show that the simulated peak strength is sensitive to the maximum crack growth velocity and the flaw distribution, while the stress collapse portion of the test is partially influenced by the granular flow behavior of the fully damaged material. From simulations of simplified ballistic impact, we suggest that the total amount of granular flow (a possible performance metric) can be reduced by either a larger granular flow slope (more angular fragments) or a larger granular flow timescale (larger fragments). We then discuss the implications for materials design.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 86, January 2016, Pages 237–258
نویسندگان
, ,