کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
792990 1467060 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finite strain discrete dislocation plasticity in a total Lagrangian setting
ترجمه فارسی عنوان
پویایی جابجایی گسسته محدود در یک حالت کل لاگرانژی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی

We present two total Lagrangian formulations for finite strain discrete dislocation plasticity wherein the discrete dislocations are presumed to be adequately represented by singular linear elastic fields thereby extending the superposition method of Van der Giessen and Needleman (1995) to finite strains. The finite deformation effects accounted for are (i) finite lattice rotations and (ii) shape changes due to slip. The two formulations presented differ in the fact that in the “smeared-slip” formulation the discontinuous displacement field is smeared using finite element shape functions while in the “discrete-slip” formulation the weak form of the equilibrium statement is written to account for the slip displacement discontinuity. Both these total Lagrangian formulations use a hyper-elastic constitutive model for lattice elasticity. This overcomes the issues of using singular dislocation fields in a hypo-elastic constitutive relation as encountered in the updated Lagrangian formulation of Deshpande et al. (2003). Predictions of these formulations are presented for the relatively simple problems of tension and compression of single crystals oriented for single slip. These results show that unlike in small-strain discrete dislocation plasticity, finite strain effects result in a size dependent tension/compression asymmetry. Moreover, both formulations give nearly identical predictions and thus we expect that the “smeared-slip” formulation is likely to be preferred due to its relative computational efficiency and simplicity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 83, October 2015, Pages 160–178
نویسندگان
, , ,