کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
794733 | 902539 | 2013 | 9 صفحه PDF | دانلود رایگان |
Peripheral glass milling for trimmings of several devices and touch panels is studied with measuring cutting forces and observing surface damages. Peripheral millings were performed to cut the end faces of 1 mm thick glass plates. In order to discuss the typical cutting force in glass milling, the cutting forces were compared with those of 0.45% carbon steel (AISI 1045) at high feed rates in a large radial depth of cut. The differences of the cutting force in glass milling from that of metal milling are: (1) the change in the cutting force does not correspond to the uncut chip thickness; and (2) the maximum cutting force does not change with the feed rate. A model is proposed to predict the cutting forces in glass millings, which are performed in ductile, ductile/brittle complex and brittle modes. The cutting force depends on the uncut chip thickness in a ductile mode. In a brittle mode, the mean value of the cutting force does not change though the vibration component becomes large. Because the uncut chip thickness changes with the dynamic displacement of the cutting edge, the cutting process is performed in a ductile/brittle complex mode when the cutting mode changes in ductile–brittle transition. The critical uncut chip thickness at the transition from a ductile to a ductile/brittle complex mode and that of the transition from a ductile/brittle complex to brittle mode are determined in the rate of the cutting force change. The force model is verified by the cutting forces in up- and down-cutting milling operations. Then, the surface finishing and crack propagation in up- and down-cutting millings were analyzed to define the cutter path in glass trimming. Cracks propagate to the surface to be finally finished in down-cutting; while cracks propagate to the chip to be removed in up-cutting. The cutter path in up-cutting milling should be selected to finish the fine surfaces.
► Glass peripheral milling is discussed with a cutting force model.
► A ductile/brittle complex mode is considered in glass milling.
► An approach is presented to determine the critical uncut chip thicknesses.
► Crack propagation is observed to discuss the surface damages using a FIB equipment.
► The cutter path is discussed to finish the good surfaces in glass trimming.
Journal: Journal of Materials Processing Technology - Volume 213, Issue 9, September 2013, Pages 1523–1531