کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
794901 902574 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rational integrals of quasi-homogeneous dynamical systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Rational integrals of quasi-homogeneous dynamical systems
چکیده انگلیسی

Dynamical systems, described by quasi-homogeneous systems of differential equations with polynomial right-hand sides, are considered. The Euler–Poisson equations from solid-state dynamics, as well as the Euler–Poincaré equations in Lie algebras, which describe the dynamics of systems in Lie groups with a left-invariant kinetic energy, can be pointed out as examples. The conditions for the existence of rational first integrals of quasi-homogeneous systems are found. They include the conditions for the existence of invariant algebraic manifolds. Examples of systems with rational integrals which do not admit of first integrals that are polynomial with respect to the momenta are presented. Results of a general nature are also demonstrated in the example of a Hess–Appel’rot invariant manifold from the dynamics of an asymmetric heavy top.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Mathematics and Mechanics - Volume 79, Issue 3, 2015, Pages 209–216
نویسندگان
,