کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
795202 | 902604 | 2010 | 7 صفحه PDF | دانلود رایگان |

Parts of the asymptotic stability boundaries of the uniform motion of the centre of mass of a system of bodies consisting of an asymmetrical satellite with a three-axis gyroscope in a circular orbit are investigated by the second Lyapunov method. Terms of the Lyapunov function that are higher than the second order are enlisted for the investigation. The sign-definiteness criterion of inhomogeneous forms is employed for the corresponding function. Parts of the stability boundaries in which the steady motion investigated is asymptotically stable are established using the Lyapunov asymptotic stability theorem. Application of the Barbashin and Krasovskii theorems reveals parts of the stability boundaries in which the steady motion is unstable. It is established that the asymptotic stability of the steady motion investigated is solved by expanding the Lyapunov function to sixth-order terms.
Journal: Journal of Applied Mathematics and Mechanics - Volume 74, Issue 2, 2010, Pages 164–170