کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
796772 1467115 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An energy-based microstructure model to account for fatigue scatter in polycrystals
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
An energy-based microstructure model to account for fatigue scatter in polycrystals
چکیده انگلیسی

Scatter observed in the fatigue response of a nickel-based superalloy, U720, is linked to the variability in the microstructure. Our approach is to model the energy of a persistent slip band (PSB) structure and use its stability with respect to dislocation motion as our failure criterion for fatigue crack initiation. The components that contribute to the energy of the PSB are identified, namely, the stress field resulting from the applied external forces, dislocation pile-ups, and work-hardening of the material is calculated at the continuum scale. Further, energies for dislocations creating slip in the matrix/precipitates, interacting with the GBs, and nucleating/agglomerating within the PSB are computed via molecular dynamics simulations. Through this methodology, fatigue life is predicted based on the energy of the PSB, which inherently accounts for the microstructure of the material. The present approach circumvents the introduction of uncertainty principles in material properties. It builds a framework based on mechanics of microstructure, and from this framework, we construct simulated microstructures based on the measured distributions of grain size, orientation, neighbor information, and grain boundary character, which allows us to calculate fatigue scatter using a deterministic approach. The uniqueness of the approach is that it avoids the large number of parameters prevalent in previous fatigue models. The predicted lives are in excellent agreement with the experimental data validating the model capabilities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 59, Issue 3, March 2011, Pages 595–609
نویسندگان
, , ,