کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
796797 1467128 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel
چکیده انگلیسی

Intergranular cracking associated with hydrogen embrittlement represents a particularly severe degradation mechanism in metallic structures which can lead to sudden and unexpected catastrophic fractures. As a basis for a strategy for the prognosis of such failures, here we present a comprehensive physical-based statistical micro-mechanical model of such embrittlement which we use to quantitatively predict the degradation in fracture strength of a high-strength steel with increasing hydrogen concentration, with the predictions verified by experiment. The mechanistic role of dissolved hydrogen is identified by the transition to a locally stress-controlled fracture, which is modeled as being initiated by a dislocation pile-up against a grain-boundary carbide which in turn leads to interface decohesion and intergranular fracture. Akin to cleavage fracture in steel, the “strength” of these carbides is modeled using weakest-link statistics. We associate the dominant role of hydrogen with trapping at dislocations; this trapped hydrogen reduces the stress that impedes dislocation motion and also lowers the reversible work of decohesion at the tip of dislocation pile-up at the carbide/matrix interface. Mechanistically, the model advocates the synergistic action of both the hydrogen-enhanced local plasticity and decohesion mechanisms in dictating failure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 58, Issue 2, February 2010, Pages 206–226
نویسندگان
, , , , ,