کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
796960 | 1466604 | 2013 | 14 صفحه PDF | دانلود رایگان |

In this paper the vibration behavior of a flexible cylinder subjected to an axial flow is investigated numerically. Therefore a methodology is constructed, which relies entirely on fluid–structure interaction calculations. Consequently, no force coefficients are necessary for the numerical simulations. Two different cases are studied. The first case is a brass cylinder vibrating in an axial water flow. This calculation is compared to experiments in literature and the results agree well. The second case is a hollow steel tube, subjected to liquid lead–bismuth flow. Different flow boundary conditions are tested on this case. Each type of boundary conditions leads to a different confinement and results in different eigenfrequencies and modal damping ratios. Wherever appropriate, a comparison has been made with an existing theory. Generally, this linear theory and the simulations in this paper agree well on the frequency of a mode. With respect to damping, the agreement is highly dependent on the correlation used for the normal friction coefficients in the linear theory.
Journal: Journal of Fluids and Structures - Volume 43, November 2013, Pages 110–123