کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
797060 | 1466609 | 2013 | 18 صفحه PDF | دانلود رایگان |

In this paper, we numerically study the flow physics induced by the flexural vibration of a thin cantilever plate submerged in a viscous and otherwise quiescent fluid. The computational fluid dynamics simulations are based on a finite volume approximation of the incompressible Navier–Stokes equations. We perform a detailed parametric study on relevant nondimensional parameters, including plate aspect ratio, oscillatory Reynolds number, and relative vibration amplitude, to investigate their effects on the hydrodynamic load experienced by the structure and its thrust production. Numerical results are validated with experimental data on underwater vibration of ionic polymer metal composites and used to ascertain the accuracy of theoretical findings from reduced order models available in the literature.
Journal: Journal of Fluids and Structures - Volume 38, April 2013, Pages 205–222