کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
797599 1467484 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Constitutive modeling of the anisotropic behavior of Mullins softened filled rubbers
چکیده انگلیسی

Original constitutive modeling is proposed for filled rubber materials in order to capture the anisotropic softened behavior induced by general non-proportional pre-loading histories. The hyperelastic framework is grounded on a thorough analysis of cyclic experimental data. The strain energy density is based on a directional approach. The model leans on the strain amplification factor concept applied over material directions according to the Mullins softening evolution. In order to provide a model versatile that applies for a wide range of materials, the proposed framework does not require to postulate the mathematical forms of the elementary directional strain energy density and of the Mullins softening evolution rule. A computational procedure is defined to build both functions incrementally from experimental data obtained during cyclic uniaxial tensile tests. Successful comparisons between the model and the experiments demonstrate the model abilities. Moreover, the model is shown to accurately predict the non-proportional uniaxial stress-stretch responses for uniaxially and biaxially pre-stretched samples. Finally, the model is efficiently tested on several materials and proves to provide a quantitative estimate of the anisotropy induced by the Mullins softening for a wide range of filled rubbers.


► Model for filled rubber capturing the Mullins softening induced anisotropy.
► General non-proportional pre-loading histories are considered.
► A directional approach is used with an anisotropic softening evolution.
► A fitting procedure is defined to provide larger model verstatility.
► The model was efficiently tested on several materials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanics of Materials - Volume 57, February 2013, Pages 30–41
نویسندگان
, , , ,