کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
798241 1467121 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Acoustic, thermal and flow processes in a water filled nanoporous glass by time-resolved optical spectroscopy
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Acoustic, thermal and flow processes in a water filled nanoporous glass by time-resolved optical spectroscopy
چکیده انگلیسی

We present heterodyne detected transient grating measurements on water filled Vycor 7930 in the range of temperature 20–90 °C. This experimental investigation enables to measure the acoustic propagation, the average density variation due to the liquid flow and the thermal diffusion in this water filled nano-porous material. The data have been analyzed with the model of Pecker and Deresiewicz which is an extension of Biot model to account for the thermal effects. In the whole temperature range the data are qualitatively described by this hydrodynamic model that enables a meaningful insight of the different dynamic phenomena. The data analysis proves that the signal in the intermediate and long time-scale can be mainly addressed to the water dynamics inside the pores. We proved the existence of a peculiar interplay between the mass and the heat transport that produces a flow and back-flow process inside the nano-pores. During this process the solid and liquid dynamics have opposite phase as predicted by the Biot theory for the slow diffusive wave. Nevertheless, our experimental results confirm that transport of elastic energy (i.e. acoustic propagation), heat (i.e. thermal diffusion) and mass (i.e. liquid flow) in a liquid filled porous glass can be described according to hydrodynamic laws in spite of nanometric dimension of the pores. The data fitting, based on the hydrodynamic model, enables the extraction of several parameters of the water–Vycor system, even if some discrepancies appear when they are compared with values reported in the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 58, Issue 9, September 2010, Pages 1302–1317
نویسندگان
, , , ,