کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
799723 1467120 2010 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A phase field model of electromechanical fracture
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
A phase field model of electromechanical fracture
چکیده انگلیسی

Structural reliability analyses of piezoelectric solids need the modeling of failure under coupled electromechanical actions. However, the numerical simulation of failure due to fracture based on sharp crack discontinuities may suffer in situations with complex crack topologies. This can be overcome by a diffusive crack modeling based on the introduction of a crack phase field. In this work, we develop a framework of diffusive fracture in piezoelectric solids. We start our investigation with the definition of a crack surface functional   of the phase field that Γ-convergesΓ-converges for vanishing length-scale parameter to a sharp crack topology. This functional provides the basis for the definition of suitable dissipation functions which govern the evolution of the crack phase field. Based on experimental results available in the literature, we suggest a non-associative dissipative framework where the fracture phase field is driven by the mechanical part of the coupled electromechanical driving force. This accounts for a hierarchical view that considers (i) the decrease of stiffness due to mechanical rupture as the primary action that is followed by (ii) the decrease of electric permittivity due to the generated free space. The proposed definition of mechanical and electrical parts of the fracture driving force follows in a natural format from a kinematic assumption, that decomposes the total strains and the total electric field into energy–enthalpy-producing parts and fracture parts, respectively. Such an approach allows the insertion of well-known anisotropic piezoelectric storage functions without change. We end up with a three-field-problem that couples the displacement with the electric potential and the fracture phase field. The latter is governed by a micro-balance equation, which appears in a very transparent form in terms of a history field containing a maximum fracture source obtained in the time history of the electromechanical process. This representation allows the construction of a very robust algorithmic treatment based on a operator split scheme, which successively updates in a typical time step the history field, the crack phase field and finally the two piezoelectric fields. The proposed model is considered to be the canonically simple scheme for the simulation of diffusive electromechanical crack propagation in solids. We demonstrate its modeling capacity by means of representative numerical examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 58, Issue 10, October 2010, Pages 1716–1740
نویسندگان
, , ,