کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
802766 | 1467464 | 2014 | 13 صفحه PDF | دانلود رایگان |
• A unified analytical model for dynamic effects of microlattice structures.
• Dynamic effects include inertial effect, shock wave effect, strain rate hardening.
• The analytical model describes the FEM results very well.
• A mechanism map for different impacting velocities is proposed.
Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with v2. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity at dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads.
Journal: Mechanics of Materials - Volume 77, October 2014, Pages 1–13